

A parameterization of sulfuric acid-dimethylamine nucleation and its application in three-dimensional modeling

- Yuyang Li^{1,#}, Jiewen Shen^{1, 2,#}, Bin Zhao^{1, 2, *}, Runlong Cai³, Shuxiao Wang^{1, 2}, Yang Gao⁴, Manish Shrivastava⁵, Da Gao^{1, 2}, Jun Zheng⁶, Markku Kulmala^{2, 7, 8}, Jingkun Jiang^{1, *}
- ¹State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University,
- 7 100084 Beijing, China
- ²State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
- ³Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki,
- ⁴Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, 11
- China
- ⁵Brian Gaudet, Pacific Northwest National Laboratory, Richland, Washington, USA 13
- ⁶School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing
- University of Chemical Technology, 100029 Beijing, China
- ⁸Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences,
- Nanjing University, Nanjing, China
- # These authors contributed equally
- * Correspondence to: Bin Zhao (bzhao@mail.tsinghua.edu.cn) and Jingkun Jiang (jiangjk@tsinghua.edu.cn)

https://doi.org/10.5194/acp-2023-15 Preprint. Discussion started: 31 January 2023 © Author(s) 2023. CC BY 4.0 License.

Abstract. Sulfuric acid (SA) is a governing gaseous precursor for atmospheric new particle formation (NPF) in diverse 22 23 environments, which is a major source of global ultrafine particles. In polluted urban atmosphere with high condensation sink 24 (CS), the formation of stable SA-amine clusters, such as SA-DMA clusters, usually initializes intense NPF events. Coagulation 25 scavenging and cluster evaporation are dominant sink processes of SA-amine clusters in urban atmosphere, yet they are not 26 quantitatively included in the present parameterizations of SA-amine nucleation. We herein report a parameterization of SA-27 DMA nucleation based on cluster dynamic simulations and quantum chemistry calculations, with certain simplifications to largely reduce the computational costs. Compared with previous SA-DMA nucleation parameterizations, this new 28 29 parameterization would be able to reproduce the dependences of particle formation rates on temperature and CS. We then 30 incorporated it in a three-dimensional chemical transport model to simulate the evolution of particle number size distributions. 31 Simulation results show good consistency with the observations in the occurrence of NPF events and particle number size distributions in wintertime Beijing, showing a significant improvement compared to that using parameterization without 32 33 coagulation scavenging. Quantitative analysis shows that SA-DMA nucleation contributes majorly to nucleation rates and aerosol population during the 3-D simulations in Beijing (>99% and >60%, respectively). These results broaden the 34 understanding of NPF in urban atmospheres and stress the necessity of including the effects of coagulation scavenging and 35 36 cluster stability in simulating SA-DMA nucleation in three-dimensional simulations. This would improve the performance in particle source apportionment and quantification of aerosol effects on air quality, human health, and climate. 37

1 Introduction

New particle formation (NPF) is the major source of atmospheric particles in terms of their number concentration, which 39 40 regulates the Earth's radiative balance and affects the climate (Kulmala et al., 2004; Gordon et al., 2017; Merikanto et al., 41 2009). The transformation from gaseous precursors to stable clusters and particles via nucleation is the initial step of NPF, and 42 new particle formation rate (J) is an essential parameter to characterize NPF intensity (Kulmala, 2003). Although nucleation 43 processes would be suppressed by coagulation scavenging in urban atmospheres with high condensation sink (CS) (Cai and Jiang, 2017; Cai et al., 2017b), intense NPF events have been frequently observed (Wu et al., 2007; Xiao et al., 2015; Deng et 44 45 al., 2020). Recently, increasing evidence has been provided that those intense events are driven by the formation of stable SA-46 amine clusters (Cai et al., 2022; Jen et al., 2014b) with a speed close to the collision limit for SA molecules, thus deriving high nucleation rates in urban atmospheres (Cai et al., 2021d; Yao et al., 2018; Chen et al., 2012). Thus, integrating SA-amine 47 48 nucleation into three-dimensional (3-D) models would be essential in extending the understanding of NPF in polluted urban areas and quantifying its underlying impacts on the environment and climate. This requires a quantitative representation of 49 50 particle formation rates through SA-amine nucleation for 3-D models. Semi-empirical power-law functions are widely used in SA-relevant nucleation rate studies to fit the experimental data, which 51 has been shown to reproduce the measured J in certain ambient observations or experimental conditions (Riccobono et al., 52 53 2014; Dunne et al., 2016; Bergman et al., 2015; Hanson et al., 2017; Semeniuk and Dastoor, 2018; Kurten et al., 2014; Kurten et al., 2018). For SA-amine nucleation, Bergman et al. (2015) and Dunne et al. (2016) have presented semi-empirical 54 parameterizations of good consistencies with chamber and flow-tube experimental results (Almeida et al., 2013; Jen et al., 55 2014b; Glasoe et al., 2015). In real urban atmosphere, recent advances have shown that coagulation scavenging would largely 56 57 suppress concentrations of molecular clusters, and thus the nucleation rates (Cai and Jiang, 2017; Cai et al., 2021c; Cai et al., 2021d; Marten et al., 2022). It has also been addressed that the formation of the smallest SA-amine clusters, which is largely 58 59 dependent on cluster stability, is the limiting step for SA-amine nucleation rates (Cai et al., 2022). However, the effects of 60 coagulation scavenging and cluster stability would vary with the environmental factors, e.g., CS and temperature, while these 61 effects have not been well represented in semi-empirical power-law functions derived from certain experimental systems or ambient environments. Cluster kinetic simulations coupled with quantum chemistry calculations (Mcgrath et al., 2012), which 62 take into account the effects of both coagulation scavenging and cluster stability, have been widely applied in zero-dimensional 63 64 or one-dimensional simulations of SA-NH₃ or SA-amine nucleation (Yang et al., 2021; Lu et al., 2020; Yao et al., 2018; Yu, 65 2006; Yu and Turco, 2001). Specifically, both cluster kinetic simulations and observations reveal that dimethylamine (DMA) is plausibly most efficient in stabilizing SA clusters and is regarded as the key amine species deriving high particle formation 66 rates in urban atmosphere (Jen et al., 2014b; Cai et al., 2022; Yao et al., 2018; Chen et al., 2012). However, no method with 67 good representations of coagulation scavenging and cluster stabilities has been reported to explicitly simulate the SA-DMA 68 69 nucleation rates in 3-D chemical transport models. 70 A challenge in setting up a parameterization based on cluster kinetic simulations for 3-D chemical transport models is to reduce computational costs and yield explicit expressions. A plausible method to reduce computational costs is to omit the unstable 71 72 clusters with high evaporation rates from the nucleation pathway. Accordingly, different nucleation schemes were presented 73 to represent the dominant source or sink processes of SA-DMA clusters in specific chamber experiments or ambient environments (Lu et al., 2020; Cai et al., 2021d). For polluted urban atmospheres, a kinetic model with a key pathway of 74 75 particle formation in SA-DMA nucleation was constructed, yielding good predictions of measured SA cluster concentrations and 1.4 nm particle formation rates $(J_{1.4})$ in urban Beijing (Cai et al., 2021d). Application of pseudo-steady-state assumptions 76 77 is also an alternative method for reducing computational costs and yielding explicit expressions. The NPF occurrence indicator 78 (I) based on the kinetic model with pseudo-steady-state assumptions has shown good consistency in qualitatively estimating the NPF events in urban Beijing and Shanghai (Cai et al., 2021c). These results indicate the potential of deriving an explicit

- 80 parameterization of particle formation rates by applying pseudo-steady-state assumptions to the kinetic model, although further
- 81 quantitative analysis is still required to validate this parameterization.
- 82 In this study, we set up an SA-DMA nucleation parameterization, which is designed for application in 3-D chemical transport
- 83 models. The parameterization is based on the pseudo-steady-state particle formation rate in the kinetic model, with a full
- 84 representative of the effects of coagulation scavenging and cluster stability (Cai et al., 2021d). Generally, only four variables
- 85 (temperature T, CS, gaseous DMA concentrations [B], and concentrations of SA molecules or clusters containing one SA
- 86 molecule [SAtot]) are used in the parameterization, with computational costs largely reduced. We then implement the
- 87 parameterization in a 3-D chemical transport model and combine it with an integrated source-sink representation of DMA to
- 88 simulate the evolution of the particle number size distributions (PNSDs) in wintertime Beijing. The precursor concentrations,
- 89 PNSDs, NPF occurrence and $J_{1,4}$ show relatively good consistencies between simulations and observations. The simulations
- 90 show that the SA-DMA nucleation contributes >99% of the J_{1.4} and >60% of the total particle number concentration in
- 91 wintertime Beijing, respectively. With this parameterization, 3-D chemical transport models could significantly improve the
- 92 simulation of NPF, especially in urban environments, and thus the effects of NPF on particulate matter pollution or climate.

93 2 Methods

94 2.1 Derivation of Parameterized Formation Rate in SA-DMA Nucleation

- 95 Limited by computational quantum chemistry calculation results, SA-DMA nucleation is commonly simulated in the range of
- 96 clusters containing not more than 4 SA or 4 DMA molecules (Olenius et al., 2013; Ortega et al., 2012). As unstable clusters
- 97 would evaporate with higher rates, the formation of larger clusters potentially follows the pathways of the most stable clusters.
- 98 In addition, as the SA-DMA clusters are increasingly stable along the main pathway of cluster formation, the clusters not
- 99 smaller than A_4B_4 (hereafter A_mB_n refers to clusters containing m SA and n DMA molecules) is assumed to not evaporate back
- $100 \quad \text{in these simulations. Although there are uncertainties in the pathways presented based on different quantum chemistry methods,} \\$
- 101 it is well accepted that the $A_m B_m$ (m=1 to 4) and $A_2 B_1$ clusters are relatively stable in the SA-DMA nucleation scheme (Olenius
- 102 et al., 2017; Olenius et al., 2013; Ortega et al., 2012; Myllys et al., 2019).
- 103 Accordingly, the parameterization in this study is derived from the nucleation pathway including A, B and other 5 SA-DMA
- clusters $(A_m B_m (m=1 \text{ to } 4) \text{ and } A_2 B_1)$, consistent with a previous study (Cai et al., 2021d). The clusters except $A_4 B_4$ are assumed
- 105 to be in pseudo-steady-states, i.e. the sink due to evaporation, coagulation scavenging, and cluster collision is equal to the
- source due to the collisions of molecules or smaller clusters. As the A_4B_4 clusters are estimated to be with an electrical mobility
- diameter of approximately 1.4 nm, the pseudo-steady-state formation rate of A_4B_4 would be applied in the parameterization of
- 108 $J_{1.4}$ in this study.

09 2.1.1 Derivation of Collision Coefficients, Coagulation Sink, and Evaporation Rates

- 110 In the nucleation pathway discussed above, A, B, and 5 SA-DMA clusters are included. The collision coefficients between
- them $(\beta_{i,j})$ and the evaporation rate of A_1B_1 clusters (γ) would vary with T during the simulation. The coagulation sinks (CoagS_i)
- 112 due to the coagulation scavenging of background aerosols are dependent on CS. The work discussed in this section is focused
- 113 on simplification of the derivation of these parameters to be updated in each simulation time interval to reduce the
- 114 computational costs
- As the involved clusters and molecules are in the free molecular regime (Knudsen number > 10), $\beta_{i:j}$ in SA-DMA nucleation
- 116 processes can be calculated based on kinetic gas theory (Seinfeld and Pandis, 1998; Olenius et al., 2013; Ortega et al., 2012):

117
$$\beta_{i:j} = (\frac{3}{4\pi})^{1/6} (\frac{1}{m_i} + \frac{1}{m_j})^{1/2} (V_i^{1/3} + V_j^{1/3})^2 (6k_b T)^{1/2} E_{ij},$$
 (1)

- where m(kg) and $V(m^3)$ represent the molecular mass and molecular volume, respectively. The density of precursor molecules
- 119 A and B was assumed to be 1830 and 680 kg m⁻³, respectively. T (K) represents the temperature. k_b (J K⁻¹) is the Boltzmann
- 120 constant. Subscripts i and j refer to the index of the clusters or molecules (1 to 7 refer to A, B, A_1B_1 , A_2B_1 , A_2B_2 , A_3B_3 , and A_4B_4 ,
- 121 respectively, which are involved in the kinetic model). E_{ij} is a dimensionless enhancement factor of the collision rates from
- 122 Van de Waals forces between i and j. In this study, E_{ij} is assumed to be 2.3 (Chan and Mozurkewich, 2001; Sceats, 1989),
- 123 within the range of 2.3 to 2.7 predicted by Brownian coagulation models, and consistent with the value used in other cluster
- dynamics studies (Kurten et al., 2014; Lehtipalo et al., 2016; Stolzenburg et al., 2020).
- Noting that m_i and V_i are almost independent of the atmospheric conditions and E_{ij} is assumed to be constant, we can normalize
- 126 different values of $\beta_{i,j}$ into β , and the normalizing factor is shown in a look-up table (Table S1 in the supporting information
- 127 (*SI*)) as G(i,j):

$$128 \quad \beta_{i,j} = \beta G(i,j), \tag{2}$$

129 where β represents the collision coefficients between two A_1B_1 clusters (β_{3-3}), and could be calculated as:

130
$$\beta = \beta_0 \left(\frac{T}{T_0}\right)^{0.5}$$
, (3)

- where β_0 is the value of β at the standard temperature T_0 =298.15 K, constant as 1.126×10^{-15} m³ s⁻¹.
- 132 Similarly, CoagS₁ could also be normalized to CS using fixed ratios. The size dependent coagulation sink (CoagS) is calculated
- 133 with a power-law exponent of -1.7, within the typical range of atmospheric aerosols (Lehtinen et al., 2007):

134
$$CoagS_i = CS\left(\frac{V_i}{V_1}\right)^{\frac{1.7}{3}} = H(i)CS,$$
 (4)

- where the dimensionless factors H(i) are also recorded in Table S1 in the SI.
- 136 The evaporation rates of A_1B_1 could be derived based on collision-evaporation equilibrium (Ortega et al., 2012), closely
- relevant to the free energy barrier to form A_1B_1 clusters (Olenius et al., 2013; Ortega et al., 2012):

138
$$\gamma = \beta_{1-2}c_{\text{ref}}\exp(\frac{\Delta G}{k_BT}),$$
 (5)

- 139 where c_{ref} is the number concentrations under standard conditions $(2.46 \times 10^{25} \,\text{m}^3)$. ΔG is the formation free energies of A_1B_1 .
- Thus if we take $T_0 = 298.15$ as a reference, γ could also be calculated as:

141
$$\gamma = \gamma_0 \left(\frac{T}{T_0}\right)^{0.5} \exp\left(\frac{\Delta H}{k_0} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right),$$
 (6)

142
$$\gamma_0 = \gamma_0' \exp(\frac{\Delta G - \Delta G_0}{k_B T_0}),$$
 (7)

- 143 where γ_0' , with the value of 3.33 s⁻¹, is the evaporation rates of A_1B_1 at T_0 with $\Delta G = \Delta G_0 = -13.54$ kcal mol⁻¹. ΔH is the formation
- 144 enthalpies of A_1B_1 . In previous studies, several sets of ΔH and ΔG at specific temperatures were reported based on different
- quantum chemistry models. Here we use $\Delta H = -24.82$ kcal mol⁻¹ and $\Delta G = -13.54$ kcal mol⁻¹ according to the results in Myllys
- et al. (2019). If the values of ΔG need to be updated in future application of this parameterization, the values of γ_0 should be
- 147 updated as well based on Eq. 7. The sensitivity analysis of different values of ΔH and ΔG are discussed in the Results section.
- Generally, with G(i,j) and H(i) fixed into the parameterization formula, $\beta_{i\cdot j}$ and CoagS_i could be normalized to β and CS.
- Additionally, the values of γ and β could be real-time updated at any simulation timestep based on Eqs. 3 and 6.

150 2.1.2 Formula of the SA-DMA Nucleation Parameterization

- Applying the pseudo-steady-state assumptions to the key pathway discussed above (Eqs. S1 to S9) and achieving real-time γ
- 152 (s⁻¹) and β (m³ s⁻¹) (Eqs. 3 and 6), we could derive an explicit formula of the parameterized $J_{1.4}$ in this study (Eq. 8).

153
$$J_{1.4} = \frac{\beta \theta [A_1 B_1]^4}{2([A_1 B_1] + 0.39 \frac{\text{CS}}{\beta})} \left(\frac{0.23 \theta}{[A_1 B_1] + 0.39 \frac{\text{CS}}{\beta}} + \frac{1.00}{[A_1 B_1] + 0.31 \frac{\text{CS}}{\beta}} \right), \tag{8}$$

154 The above intermediate parameters are calculated as below:

155
$$[A_1B_1] = \frac{0.96[B][SA_{tot}]}{0.96[B]^{+\frac{7}{\beta}}+0.86[SA_{tot}]+0.63\frac{CS}{\beta}}$$
 (9)

156
$$\theta = 1 + \frac{2[B]}{1.16[B] + 0.46 \frac{\text{CS}}{\beta}} \frac{[\text{SA}_{\text{tot}}] - [A_1B_1]}{[A_1B_1]},$$
 (10)

157
$$\theta' = \frac{\theta(2.22[A_1B_1] + 0.86\frac{\text{CS}}{\beta})}{\sqrt{(1.11[A_1B_1] + 0.43\frac{\text{CS}}{\beta})^2 + 1.12\theta[A_1B_1]^2 + 1.11[A_1B_1] + 0.43\frac{\text{CS}}{\beta}}}$$
(11)

In Eqs. 8 to 11, the four input variables $(T(K), CS(s^{-1}), [B](m^{-3}), [SA_{tot}](m^{-3}))$ are shown in bold. Generally, only these four

159 variable parameters are needed for the 3-D chemical transport models. Additionally, compared with directly coupling cluster

160 dynamic simulations into 3-D chemical transport models, the parameterization of pseudo-steady-state J_{1.4} requires much less

161 computational time.

162 2.2 Incorporating the Parameterization into Updated WRF-Chem/R2D-VBS Model

The updated parameterization of SA-DMA nucleation was incorporated in the WRF-Chem (Weather Research and Forecasting 163 164 model with Chemistry). Before adding the SA-DMA nucleation, we already incorporated seven other NPF mechanisms in the model (Zhao et al., 2020): four inorganic pathways, including binary neutral/ion-induced SA-H₂O nucleation and ternary 165 166 neutral/ion-induced NH₃-SA-H₂O nucleation; and three organic pathways, including pure-organic neutral/ion-induced organic 167 nucleation and ternary nucleation involving organics and SA. The organic containing nucleation pathways are driven by ultraand extremely low volatility organic compounds (ULVOC and ELVOC) with O:C > 0.4, converted from monoterpene 168 169 autoxidation. The chemical transformation and volatility distribution of monoterpene is represented in the model by R2D-VBS 170 (Radical Two-Dimensional Volatility Basis Set framework) with constrained parameters against experiments. More details of 171 the R2D-VBS are given in our previous study (Zhao et al., 2020). The newly formed nano-sized particles and their initial size 172 evolution are accounted in the MOSAIC module by 20 size bins covering 1 nm to 10 µm. It is worth mentioning that the newly formed particles from SA-DMA nucleation are lumped into a lower aerosol size bin in the model than that of other seven 173 pathways. This should be attributed to that our SA-DMA nucleation parameterization are formulated at a 1.4 nm-sized particle 174 175 formation rate while the remaining ones are fitted based on measured particle formation rates from CLOUD Chamber at a 176 mobility diameter of 1.7 nm. Given that condensation of gaseous SA and DMA on pre-existing aerosols and nucleation occur 177 simultaneously in real atmosphere, in the model, we then use a time-integrated-averaged concentration of precursors over each time step to drive SA-DMA nucleation. The condensation sink for SA and DMA is calculated according to simulated real-178 time PNSDs. In addition, the consumption of both SA and DMA concentration during nucleation is also accounted in the 179 180 model, in order to represent a comprehensive sources-sink simulation scheme of two precursors in combination with other 181 settings.

182 2.2.1 Sources and Sinks of Dimethylamine in the Updated WRF-Chem/R2D-VBS Model

A regional or global bottom-up emission inventory of DMA is currently lacking, mostly due to scarce direct measurements (Yang et al., 2022; Zhu et al., 2022). In previous 3D model studies, amine/NH₃ emission ratios have often been used to estimate amine emissions due to the close correlation between NH₃ and DMA emissions. However, a fixed amine/NH₃ ratio is likely to overestimate the concentrations of amines in rural areas while underestimating those in urban areas, where high concentrations of amines have been reported (Yao et al., 2018; Bergman et al., 2015). Here, a set of source-dependent

- 188 DMA/NH₃ emission ratio was used to develop the emission inventory of DMA based on (Mao et al., 2018). The ratios for
- 189 different emission sectors were determined by a source apportionment analysis, based on a simultaneous observation of NH₃,
- 190 C1-C3 amines, NO_x, and SO₂ and also meteorological factors at a suburban site in Nanjing (Zheng et al., 2015a). We applied
- the source-dependent emission ratios (0.0070, 0.0018, 0.0015, 0.0100, and 0.0009 for chemical-industrial, other industrial,
- 192 agricultural, residential, and transportation source types, respectively) to NH₃ emissions in the ABaCAS-EI 2017 (Emission
- 193 Inventory of Air Benefit and Cost and Attainment Assessment System) for China mainland and the IIASA 2015 emission
- 194 inventory for other areas to build continental DMA emission inventory (Zheng et al., 2019; Gao et al., 2020). In addition,
- 195 DMA emission for maritime area was developed employing a DMA/NH3 ratio derived from recent campaigns in offshore
- 196 areas of China (see details in SI) (Chen et al., 2021).
- 197 DMA can be removed from the atmosphere through three main pathways: gas-phase chemical reaction, aerosol uptake, and
- 198 wet deposition, which are all explicitly considered in our model. For the gas-phase chemical reactions, only oxidation of DMA
- 199 by •OH is included. Reactions with other oxidants (O₃ and NO₃) are much slower and therefore have negligible effects on
- 200 DMA concentrations (Ge et al., 2011). The mechanism of DMA concentration depletion by aerosol uptake is still poorly
- understood, and the key parameter, uptake coefficient γ_u , varies in a wide range depending on many factors such as aerosol
- 202 composition and relative humidity. In this study, we assumed $\gamma_u = 0.001$, approximately a median value among those reported
- 203 by recent laboratory measurements (Qiu et al., 2011; Wang et al., 2010). Regarding DMA depletion by wet deposition, the
- 204 treatment is similar to that of NH₃ based on Henry's Law. The key parameters for above sink processes are summarized in
- 205 Table S2 in the SI.

206 2.2.2 Configuration of the Updated WRF-Chem/R2D-VBS Model.

- 207 The WRF-Chem model configured with the SA-DMA nucleation is applied to a domain covering eastern Asia with a horizontal
- 208 resolution of 27 km, where Beijing is located close to the center. The simulations are performed for two winter months
- 209 separately (December 2018 and January 2019) with 5 days spin-up run for each month. The ABaCAS-EI 2017 and IIASA
- 210 2015 emission inventory were used for China mainland and other areas, respectively. The biogenic emission is calculated by
- the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.04 (Guenther et al., 2006). Except for the
- 212 monoterpene-related gas and aerosol chemistry that is traced by R2D-VBS, the remaining gas- and aerosol chemical processes
- 213 are simulated by the SAPRC99 gas chemistry scheme coupled with the MOSAIC (Model for Simulating Aerosol Interaction
- and Chemistry) aerosol module and a one-dimensional VBS set for SOA modeling (Zaveri et al., 2014; Shrivastava et al.,
- 215 2019; Shrivastava et al., 2011).
- 216 Four scenario simulations with different configurations of the NPF mechanisms were conducted in this study to examine how
- 217 the SA-DMA nucleation affects the simulations of aerosol size distribution: 1) 8 NPF mechanisms with the SA-DMA
- 218 nucleation rate at 1.4 nm (abbr. DMA1.4_Mech8); 2) 8 NPF mechanisms with the SA-DMA nucleation rate at 1.7 nm
- 219 converted using modified Kerminen-Kulmala equation (Lehtinen et al., 2007) (DMA1.7_Mech8); 3) 7 NPF mechanisms
- 220 without the SA-DMA nucleation (NoDMA_Mech7); and 4) No NPF mechanism (NoDMA_Mech0). Among them, scenario 1
- 221 is our "best-case" with a full consideration of available nucleation mechanisms; scenario 2 is set to probe the feasibility to use
- 222 modified Kerminen-Kulmala equation to simulate the initial particle growth; scenario 3 is the "base-case" representing the
- 223 performance of the original model; and scenario 4 represents the evolution of aerosol population only contributed by primary
- emission. Scenarios 3 and 4 were set as controlling groups to assess the role of SA-DMA nucleation and other mechanisms.

225 2.3 Ambient Measurements

- 226 Ambient observations were conducted at an urban site in Beijing from January 2018 to April 2018 and from October 2018 to
- 227 March 2019. The site is located on the West Campus of Beijing University of Chemical Technology. Details of the observation
- site can be found in previous studies (Liu et al., 2020; Deng et al., 2020). The concentrations of SA and involving clusters are

- 229 measured using a chemical ionization high resolution time of flight mass spectrometer (CI-HTOF-MS) and a chemical
- 230 ionization time of flight mass spectrometer with a long mass analyzer (CI-LTOF-MS) (Bertram et al., 2011; Jokinen et al.,
- 231 2012). Other details in the sampling configurations have been reported in our previous study (Deng et al., 2020). Amine
- 232 concentrations are measured using a modified time of flight mass spectrometer (TOF-MS) (Zheng et al., 2015b; Cai et al.,
- 233 2021b). A weather station was deployed to measure the meteorological data, including ambient temperature, relative humidity
- 234 and pressure. The PNSDs of particles from 1 nm to 10 µm were measured using a particle size distribution (PSD) and a diethyl
- 235 glycol-scanning mobility particle sizer (DEG-SMPS) (Jiang et al., 2011; Liu et al., 2016; Cai et al., 2017a). CS is calculated
- 236 from the measured PNSDs and J_{1.4} is calculated using an improved aerosol population balance formula (Cai and Jiang, 2017).
- 237 The details of instrument calibrations and data validations can be found in our previous study (Cai et al., 2021b).

238 3 Results and discussion

3.1 Validation of Parameterization

- 240 The reasonability of pseudo-steady-state assumptions in the SA-DMA nucleation pathway was tested through comparisons
- between the characteristic equilibrium time (τ) of kinetic simulation (see details in the SI) and the data collection time interval.
- The characteristic equilibrium time of involving clusters and simulated $J_{1.4}$ were shown in Fig. S1 in the SI. Generally, in either
- 243 clean and cold circumstances or polluted and warm circumstances, the kinetically simulated J_{1.4} could be well reproduced by
- parameterized pseudo-steady-state $J_{1.4}$. Actually, τ would vary greatly with CoagS and γ , and would be higher on cleaner and
- colder days, while even in extremely clean and cold days with $CS = 0.0001 \text{ s}^{-1}$ and T = 255 K, τ of A_3B_3 (longer than other
- 246 clusters) is only ~20 min, shorter than the data collection time interval of 30 min. Thus for circumstances where there are high
- 247 atmospheric concentrations of DMA and SA, such as most typical polluted regions, we conclude that nucleation processes are
- rapid enough that kinetic $J_{1,4}$ can be represented by pseudo-steady-state $J_{1,4}$.
- Figure 1 presents the comparisons between parameterized $J_{1.4}$ in this study and those simulated in the kinetic models (hereafter
- 250 referred to as KM) presented by Cai et al. (2021) and the cluster dynamic simulations containing all A_mB_n (m, n \leq 4) clusters
- 251 (hereafter referred to as CDS). The simulated $J_{1.4}$ in KM can be reproduced by parameterized $J_{1.4}$ within a $\pm 50\%$ range for
- 252 most of the cases in urban Beijing, with no systematic deviations found between them.
- Figure 1b shows that for most of the circumstances, deviations between the parameterized $J_{1,4}$ and $J_{1,4}$ simulated in CDS are
- 254 within a range of 1 order of magnitude. However, for circumstances with high temperatures, the parameterized J_{1,4} would be
- 255 higher than those simulated in CDS, which might be due to that the A_kB_k (k=2,3 and 4) clusters are assumed to be non-
- 256 evaporative in KM while they would evaporate back in CDS under high temperatures. The reasonability of cluster stability
- assumptions under high temperatures relies mainly on the accuracy of quantum chemistry calculations, which requires more
- experimental evidence and discussions. Additionally, due to the negative dependence of simulated $J_{1.4}$ on T, the simulated $J_{1.4}$
- in this parameterization would be mostly lower than 10 cm⁻³s⁻¹ under temperatures higher than 15 °C, lower than the median
- and mean value of particle formation rates measured during long-term observations in Beijing (Deng et al., 2021). Although
- 261 they are relatively higher than those simulated in CDS, the simulation results of NPF occurrence would not show large
- 262 deviations.
- 263 The computational costs of these three simulations have also been tested on the same personal computer with a Matlab program.
- 264 To achieve the steady-state J_{1.4} in a specific atmospheric condition, the CDS and KM needs ~10 s and ~0.05 s CPU time,
- respectively, while the calculation of parameterized pseudo-steady-state $J_{1.4}$ merely costs ~2×10⁻⁷ s CPU time. The CPU time
- was reduced by a factor of 5×10^7 and 4×10^4 compared to CDS and KM, respectively. Thus introducing this parameterization
- 267 into 3-D chemical transport models could largely reduce the computational costs.

268 3.2 The Dependence of Parameterized J_{1.4} on Input Parameters

- The correlation between parameterized SA-DMA nucleation $J_{1.4}$ and the input parameters are shown in Fig. 2. The parameters
- 270 involved are T, CS, [DMA], and [SAtot]. The mean values of measured data during the observation period (281K, 0.02 s⁻¹, 3
- ppt, and 3.5×106 cm⁻³, respectively) are applied as typical conditions in the base case. Different from the semi-empirical power-
- 272 law functions only based on precursor concentrations presented by Dunne et al. (2016), the dependences of particle formation
- 273 rates on T and CS are represented in our parameterizations. With T increasing from -10 to 20 °C, γ would increase by ~2 orders
- of magnitude, as shown in Fig. 2a, and thus $J_{1.4}$ would decrease by over 2 orders of magnitude. The decreasing trend of
- observed NPF rate ($J_{1.5}$ in this case) as a function of increasing T in urban Beijing has also been reported (Deng et al., 2020),
- 276 consistent with our parameterizations.
- Fig. 2b shows that $J_{1.4}$ would decrease by 2-4 orders of magnitude with CS increasing by a factor of 10, and the logarithm
- 278 dependence is higher in circumstances with higher CS, such as urban Beijing, where CoagS dominates the sinks. This is
- 279 consistent with the negative CS dependence of measured particle formation rates and NPF occurrence demonstrated in previous
- observations in Beijing (Deng et al., 2021; Cai et al., 2021b; Cai et al., 2021a).
- 281 The parameterized J_{1.4} shows an increasing trend with increasing concentrations of SA and DMA. Parameterized J_{1.4} is
- approximately proportional to $[SA]^4$, while the dependence of $J_{1.4}$ on [DMA] is decreasing with increasing [DMA]. This is
- due to the near-saturation formation of A₁B₁ clusters, which is also found in kinetic model simulation results (Cai et al., 2021d).
- 284 Generally, the parameterization could reproduce the fact that SA-DMA nucleation is driven by SA-DMA cluster formation,
- 285 dominantly suppressed by cluster evaporation and coagulation sinks.

286 3.3 Comparison of 3D Model Simulations with Observations

- 287 As DMA and SA concentrations are key input variables for the SA-DMA nucleation parameterization, we first compare
- 288 simulated DMA and SA concentrations from the DMA1.4_Mech8 scenario with observations (Fig. 3). Generally, there are
- 289 good consistencies of both mean concentrations and temporal variations, although there are still deviations at certain times.
- 290 The mean simulated concentrations of DMA and SA are 1.9 ppt and 1.4×106 cm⁻³, respectively, close to observed
- 291 concentrations of 2.0 ppt and 1.6×10⁶ cm⁻³. This proves the validity of the comprehensive representation of source-sink
- 292 behaviors of DMA in the model.
- 293 The time series of PNSDs for different simulation scenarios are presented in Fig. 4. When SA-DMA nucleation is considered,
- the typical PNSDs shape in observed NPF days (12/07, 12/08, 12/09, 01/20, and 01/21), characterized as the burst of
- 295 nanometer-sized particles and subsequent growth, are well captured by our "best-case" scenario DMA1.4_Mech8 and also
- 296 DMA1.7_Mech8. By contrast, the scenarios without DMA-SA nucleation, NoDMA_Mech7 and NoDMA_Mech0, cannot
- 297 reproduce the observed NPF events with a "vacancy band" for 1~10 nm size range over the entire simulation period. Actually,
- 298 although there are slightly higher sub-3 nm particle concentrations in NoDMA_Mech7 than those in NoDMA_Mech0, which
- are generated from the 7 nucleation pathways other than DMA-SA nucleation, the newly formed particle concentrations are
- 300 too low to survive in the subsequent growth and be separated from background aerosols in the PNSDs. These results
- 301 demonstrate that SA-DMA nucleation should be the dominant mechanism during NPF events in Beijing compared with other
- 302 7 mechanisms
- 303 Our results also reproduce the dependence of NPF occurrence on CS in Beijing. As shown in Fig. S2 in the SI, NPF generally
- 304 occurs at low CS while high CS results in too low nucleation rates to initiate NPF. Note that the simulated sub-3 nm particle
- 305 concentrations also increase slightly on some non-NPF days in DMA1.4_Mech8 and DMA1.7_Mech8 scenarios, however,
- 306 the concentrations are ~1 order of magnitude lower than those on NPF days and the newly formed particles also fail to survive
- 307 in the subsequent growth. The improvements of using the nucleation parameterization in this study is further stressed in the

comparison between DMA1.4_Mech8 scenario and the scenario (CLOUD) using the parameterization from Dunne et al. 308 309 (2016). Figure S3 has shown that almost no rapid nucleation processes and NPF events are found in the simulation of CLOUD scenarios. In addition to the underestimation of nucleation rates, the simulated high nucleation rates usually occur on observed 310 non-NPF days (Fig.S6), which should be attributed to the ignorance of CS dependence in the power-law function 311 312 parameterizations. Figure 5 further compares the simulated and observed PNSDs averaged over the simulation period. The "best-case" scenario 313 314 DMA1.4_Mech8 brings the averaged PNSD in 1~200 nm size range much closer to the observation than those of "base-case" 315 NoDMA_Mech7, and the latter only shows a minor change compared to scenario NoDMA_Mech0 without any nucleation. One may notice that the averaged PNSD in 2~10 nm size range for scenario DMA1.4_Mech8 is still lower than that of 316 observation by ~1 order of magnitude, despite the good agreement in number concentrations of particles of ~1.4 nm. This 317 318 could be attributed to two possible reasons: the model underestimates the actual nucleation rates; or newly formed particles of ~1.4 nm grow too fast to larger size bins in the model (> 10 nm). The first one can be excluded by a generally good agreement 319 320 between simulated nucleation rates and ones derived from observation, even with a slightly higher mean value for the former 321 (shown in next section, Fig. 6). Hence, the gap in 2~10 nm size range might be attributed to the particle growth simulations in 322 the model which deserves further improvement. Moreover, in spite of similar performance in improving PNSDs simulations compared to the "best-case" DMA1.4 Mech8, the scenario of DMA1.7 Mech8 presents a shifted PNSD pattern to larger size 323 324 range. For these two scenarios including SA-DMA nucleation, scenario DMA1.4_Mech8 is more reasonable since a systematic 325 underestimation exists over the entire 1~10 nm range in scenario DMA1.7_Mech8. Still, the conversion from 1.4 nm rate to 326 those for larger particles through modified Kerminen-Kulmala equation is an alternative way to depict SA-DMA nucleation for other models with different aerosol size settings. Overall, despite aforementioned deficiencies, our updated WRF-327 Chem/R2D-VBS model configured with the SA-DMA nucleation parameterization shows substantial improvement in 328 representation of NPF events and the PNSD. 329

330 3.4 Contribution from Various Pathways to Nucleation Rates and Particle Number Concentrations

- Quantitative analysis over various nucleation pathways is performed here to improve the understanding of NPF in Beijing. As presented in Fig. 6, the variation of nucleation rates, which are derived from observed PNSD data, is well represented by the best-case scenario DMA1.4_Mech8. Compared to the vast majority contribution from SA-DMA nucleation, the nucleation rates from other nucleation mechanisms are lower by a factor of ~100. In addition, SA-DMA nucleation contributes over 60%
- 335 to aerosol population, reinforcing its dominant role in modulating aerosol population in urban atmosphere.

336 3.5 Sensitivity Analysis

- Having shown the significant improvement of model performance in simulating NPF by coupling the SA-DMA nucleation parameterization, we acknowledge that the simulation of SA-DMA nucleation in 3D model still has uncertainties in terms of both source-sink representation of DMA and nucleation parameterization. Here, several key factors which may alter model performance were selected to perform sensitivity analysis.

 First, the uncertainties brought by ΔG achieved from different quantum chemistry results are tested for both parameterized $J_{1,4}$
- First, the uncertainties brought by ΔG achieved from different quantum chemistry results are tested for both parameterized $J_{1.4}$ and the 3-D chemical transport model simulations. In previous studies, a number of ΔG values have been reported: -11.02 kcal mol⁻¹ (Ge et al., 2020), -15.40 kcal mol⁻¹ (Ortega et al., 2012), -13.54 kcal mol⁻¹ (Myllys et al., 2019). The ΔG of -14.00 kcal mol⁻¹ was applied in (Cai et al., 2021d) to achieve good consistencies between simulated and measured $J_{1.4}$ is also applied in the sensitivity analysis. Figure S7 shows the variation of parameterized $J_{1.4}$ applying different ΔG values at 281 K, the median temperature of the observation period. For DMA with median values of ~3 ppt, different $J_{1.4}$ could vary by ~5 orders of magnitude with ΔG between -11.02 kcal mol⁻¹ and -15.40 kcal mol⁻¹, while $J_{1.4}$ with ΔG of -13.54 kcal mol⁻¹ is also lower

than that of -15.40 kcal mol⁻¹ by a factor of ~10. However, if the DMA concentrations are up to ~30 ppt, the differences of J_{1.4} 348 349 when ΔG varies between -13.54 kcal mol⁻¹ and -15.40 kcal mol⁻¹ would become much smaller, due to the saturated formation 350 of A_1B_1 clusters. For the temperature of 298.15 K, the sensitivities of parameterized $J_{1,4}$ are relatively larger, because the formation of A_1B_1 clusters is far from saturation. Generally, the parameterized $J_{1,4}$ could be very sensitive to different ΔG 351 352 values achieved from quantum chemistry results due to the essential influence of cluster stabilities. As a result, using a lower 353 ΔG value of -15.40 kcal mol⁻¹ in the 3-D simulations with the DMA1.4_Mech8 scenario configuration could lead to much 354 higher nucleation rates compared to the observation (Fig. S8). Thus we call for a more systematic performance assessment of 355 quantum chemistry calculation methods to constrain the uncertainties of cluster thermodynamic stabilities. Moreover, for the DMA source, we conduct two sensitivity scenarios of doubling (DMA2) and halving (DMA0.5) the inputted 356 DMA emission to test the influence of limited measurements in constraining the DMA/NH3 emission ratio. As for the three 357 358 sink processes, the parameters for DMA-•OH reaction and wet deposition reported in the literature have relatively small differences while aerosol uptake coefficient of DMA covers a wide range over two orders of magnitude. We then conduct two 359 360 sensitivity scenarios using the upper (4.4×10⁻², Upt4.4E-2) and lower (5.9×10⁻⁴, Upt5.9E-4) limit of aerosol uptake coefficient. 361 All sensitivity scenarios are on the basis of the DMA1.4_Mech8 configuration. The influence of scaled DMA emissions and varying uptake coefficients on simulated DMA concentration, PNSDs, and nucleation rate is shown in Fig. S9-S16 in the SI. 362 As expected, the DMA concentration, especially for the nighttime spikes, is sensitive to the emission change. This causes an 363 364 overestimation for DMA2 (by a factor of ~2) and underestimation for DMA0.5 (by a factor of ~0.5), judged by monthly averaged PNSD and nucleation rates. The sensitivity analysis for the uptake coefficient, however, shows different results. A 365 higher uptake coefficient of 4.4×10⁻² leads to a much lower DMA concentration (10% of the "best-case") while DMA 366 concentration only increase slightly when the lower limit of 5.9×10^{-4} is used. Moreover, the change in uptake coefficient show 367 368 limited effect on PNSD. The reason is that the DMA concentrations during NPF periods are much less affected by the changes 369 in uptake coefficient than those in non-NPF periods, since NPF usually occurs at low CS conditions when the uptake of DMA 370 is weak. The sensitivity analysis above show that the parameters used in our simulation are reasonable, since perturbations 371 within the ranges reported in the literature generally worsen the model performance. We also expect more field measurements 372 of DMA emission and its aerosol uptake to further constrain the key source-sink process parameters in the simulation of DMA, 373 although some of them show minor effect on NPF and PNSD simulations.

4 Conclusions

374

This study presents a SA-DMA nucleation parameterization for application in 3-D chemical transport models. Compared to semi-empirical power-law fitting parameterizations, this new parameterization is based on the key pathway of SA-DMA cluster formation and make good representations of the coagulation scavenging effect and cluster stability. Pseudo-steady-state assumptions are applied and validated according to the short characteristic equilibrium time and through comparisons with the cluster dynamic simulations and the kinetic model. Compared with simulating the SA-DMA nucleation with cluster dynamic simulations or the kinetic model, applying this parameterization into 3-D chemical transport models would largely reduce the computational costs.

We incorporate this new parameterization as well as the sources and sinks of DMA into the WRF-Chem/R2D-VBS model.

Using the updated model, we simulate the DMA concentrations and PNSDs in Beijing during December 2018 and January

2019. Comparisons are made between 3-D model simulations and ambient measurements. Good consistency is achieved in

simulating the precursor concentrations, which validates the source-sink simulation of SA and DMA. Primarily, our

quantitative analysis show that compared to other nucleation mechanisms, SA-DMA nucleation would contribute to >99% of

particle formation rates and >60% of particle number concentrations during the simulation period in urban Beijing. Although

the uncertainties exist due to the excess rapid growth in 3-D simulation, SA-DMA nucleation should be dominant sources of aerosol population due to its dominance in new particle formation rates. Furtherly, the 3-D simulations with this parameterization make good predictions of the CS-dependent NPF occurrence in urban Beijing and quantitatively reproduce the particle size distributions. These demonstrate that incorporating the SA-DMA nucleation parameterization including the effect of coagulation scavenging and cluster stabilities with 3-D chemical transport models would significantly improve the simulation of NPF and the particle size distributions. Such improvement would be important for further simulations of cloud condensation nuclei and the climate effects of aerosols and NPF events. The improved simulations of particle size distributions

395 also provide more evidence for quantitatively evaluate the environmental and health effect of ultrafine particles.

This study has emphasized that 3-D simulations with this new parameterization could reproduce the CS-dependent particle 396 formation rates and NPF occurrence in Beijing. As CS could vary in a relative wide range between NPF days and non-NPF 397 398 days in urban atmosphere (Xiao et al., 2015; Wu et al., 2007; Deng et al., 2021), compared to semi-empirical power-law functions, this parameterization of particle formation rates would be more effective in predicting the NPF occurrence in urban 399 400 atmosphere. Additionally, the particle formation rates from other nucleation mechanisms should also be suppressed by high CS, which needs further exploration and parameterizations. Our methodology of applying pseudo-steady-state assumptions to 401 402 kinetic models could be important in reducing computational costs of other SA-amine nucleation systems. For instance, 403 quantum chemistry calculations also indicate that other basic molecules like trimethylamine and diamines (Jen et al., 2016; Jen et al., 2014a), might also form relative stable clusters with SA molecules, hence the methodology of parameterizations in 404

406 Codes/Data availability

this study could also be extended for them.

405

407 The codes/data are available upon request from the corresponding author.

408 Author Contribution

- 409 Y.L., J.S., B.Z., and J.J. designed the research; J.Z., M.K., and J.J. collected the observational data; Y.L., R.C., and J.J. set up
- 410 and tested the parameterization; J.S., B.Z., S.W., and D.G. developed the 3-D model and performed the simulations; Y.L. and
- 411 J.S. analyzed the data with the help of R.C., B.Z., and J.J.; M.S. and Y.G. presented important suggestions for the writings;
- 412 Y.L., J.S., B.Z., and J.J. wrote the paper with inputs from all co-authors.

413 Competing Interests

- 414 Some authors are members of the editorial board of journal Atmospheric Chemistry and Physics. The peer-review process was
- 415 guided by an independent editor, and the authors have also no other competing interests to declare.

416 Acknowledgement

- 417 Financial support from the National Natural Science Foundation of China (22188102, 92044301 and 42275110), Tencent
- 418 Foundation through the XPLORER PRIZE and Samsung PM2.5 SRP are acknowledged. M. Shrivastava acknowledges the
- 419 support from the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research
- 420 through the Early Career Research Program.

421 References

- 422 Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A.,
- Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart,
- 424 S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H.,
- 425 Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger,
- 426 M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja,
- 427 T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S.,
- Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Trostl, J., Tsagkogeorgas,
- 429 G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P. L., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R.,
- Wimmer, D., Ye, P. L., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop, D. R., Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,
- Vehkamaki, H., and Kirkby, J.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere Nature, 502, 359-363, 2013.
- Bergman, T., Laaksonen, A., Korhonen, H., Malila, J., Dunne, E. M., Mielonen, T., Lehtinen, K. E. J., Kuhn, T., Arola, A.,
 and Kokkola, H.: Geographical and diurnal features of amine-enhanced boundary layer nucleation, J Geophys Res-Atmos,
 120, 9606-9624, 2015.
- Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J. A., Cubison, M. J., Gonin, M., and
 Worsnop, D. R.: A field-deployable, chemical ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471-1479, 10.5194/amt-4-1471-2011, 2011.
- Cai, R., Chen, D.-R., Hao, J., and Jiang, J.: A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing,
 Journal of Aerosol Science, 106, 111-119, https://doi.org/10.1016/j.jaerosci.2017.01.004, 2017a.
- Cai, R., Yan, C., Worsnop, D. R., Bianchi, F., Kerminen, V.-M., Liu, Y., Wang, L., Zheng, J., Kulmala, M., and Jiang, J.: An
 indicator for sulfuric acid–amine nucleation in atmospheric environments, Aerosol Science and Technology, 55, 1059-1069, 10.1080/02786826.2021.1922598, 2021a.
- Cai, R., Yan, C., Yang, D., Yin, R., Lu, Y., Deng, C., Fu, Y., Ruan, J., Li, X., Kontkanen, J., Zhang, Q., Kangasluoma, J., Ma,
 Y., Hao, J., Worsnop, D. R., Bianchi, F., Paasonen, P., Kerminen, V.-M., Liu, Y., Wang, L., Zheng, J., Kulmala, M., and
 Jiang, J.: Sulfuric acid–amine nucleation in urban Beijing, Atmospheric Chemistry and Physics, 21, 2457-2468,
 10.5194/acp-21-2457-2021, 2021b.
- 448 Cai, R. L. and Jiang, J. K.: A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging, Atmos Chem Phys. 17, 12659-12675, 2017.
- 450 Cai, R. L., Yang, D. S., Fu, Y. Y., Wang, X., Li, X. X., Ma, Y., Hao, J. M., Zheng, J., and Jiang, J. K.: Aerosol surface area concentration: a governing factor in new particle formation in Beijing, Atmos Chem Phys, 17, 12327-12340, 2017b.
- Cai, R. L., Yan, C., Worsnop, D. R., Bianchi, F., Kerminen, V. M., Liu, Y. C., Wang, L., Zheng, J., Kulmala, M., and Jiang,
 J. K.: An indicator for sulfuric acid-amine nucleation in atmospheric environments, Aerosol Sci Tech, 55, 1059-1069,
 2021c.
- Cai, R. L., Yan, C., Yang, D. S., Yin, R. J., Lu, Y. Q., Deng, C. J., Fu, Y. Y., Ruan, J. X., Li, X. X., Kontkanen, J., Zhang, Q.,
 Kangasluoma, J., Ma, Y., Hao, J. M., Worsnop, D. R., Bianchi, F., Paasonen, P., Kerminen, V. M., Liu, Y. C., Wang, L.,
 Zheng, J., Kulmala, M., and Jiang, J. K.: Sulfuric acid-amine nucleation in urban Beijing, Atmos Chem Phys, 21, 2457-2468, 2021d.
- Cai, R. L., Yin, R. J., Yan, C., Yang, D. S., Deng, C. J., Dada, L., Kangasluoma, J., Kontkanen, J., Halonen, R., Ma, Y., Zhang,
 X. H., Paasonen, P., Petaja, T., Kerminen, V. M., Liu, Y. C., Bianchi, F., Zheng, J., Wang, L., Hao, J. M., Smith, J. N.,
 Donahue, N. M., Kulmala, M., Worsnop, D. R., and Jiang, J. K.: The missing base molecules in atmospheric acid-base nucleation, Natl Sci Rev, 9, 2022.
- 463 Chan, T. W. and Mozurkewich, M.: Measurement of the coagulation rate constant for sulfuric acid particles as a function of particle size using tandem differential mobility analysis, Journal of Aerosol Science, 32, 321-339, 2001.
- Chen, D., Shen, Y., Wang, J., Gao, Y., Gao, H., and Yao, X.: Mapping gaseous dimethylamine, trimethylamine, ammonia,
 and their particulate counterparts in marine atmospheres of China's marginal seas Part 1: Differentiating marine emission
 from continental transport, Atmospheric Chemistry and Physics, 21, 16413-16425, 10.5194/acp-21-16413-2021, 2021.
- Chen, M., Titcombe, M., Jiang, J., Jen, C., Kuang, C., Fischer, M. L., Eisele, F. L., Siepmann, J. I., Hanson, D. R., Zhao, J.,
 and McMurry, P. H.: Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer,
 Proc Natl Acad Sci U S A, 109, 18713-18718, 10.1073/pnas.1210285109, 2012.
- 471 Deng, C., Cai, R., Yan, C., Zheng, J., and Jiang, J.: Formation and growth of sub-3 nm particles in megacities: impact of background aerosols, Faraday Discuss, 226, 348-363, 10.1039/d0fd00083c, 2021.
- Deng, C. J., Fu, Y. Y., Dada, L., Yan, C., Cai, R. L., Yang, D. S., Zhou, Y., Yin, R. J., Lu, Y. Q., Li, X. X., Qiao, X. H., Fan,
 X. L., Nie, W., Kontkanen, J., Kangasluoma, J., Chu, B. W., Ding, A. J., Kerminen, V. M., Paasonen, P., Worsnop, D. R.,
 Bianchi, F., Liu, Y. C., Zheng, J., Wang, L., Kulmala, M., and Jiang, J. K.: Seasonal Characteristics of New Particle
- Formation and Growth in Urban Beijing, Environ Sci Technol, 54, 8547-8557, 2020.
- Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A.,
 Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue,
- N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma,
- J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J.,
 Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P.,
- 482 Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipilaa, M., Smith, J. N., Stozkhov, Y., Tome, A.,

- 483 Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle 484 formation from CERN CLOUD measurements, Science, 354, 1119-1124, 2016.
- 485 Gao, M., Han, Z., Tao, Z., Li, J., Kang, J.-E., Huang, K., Dong, X., Zhuang, B., Li, S., Ge, B., Wu, Q., Lee, H.-J., Kim, C.-H., 486 Fu, J. S., Wang, T., Chin, M., Li, M., Woo, J.-H., Zhang, Q., Cheng, Y., Wang, Z., and Carmichael, G. R.: Air quality and 487 climate change, Topic 3 of the Model Inter-Comparison Study for Asia Phase III (MICS-Asia III) - Part 2: aerosol radiative 488 effects and aerosol feedbacks, Atmospheric Chemistry and Physics, 20, 1147-1161, 10.5194/acp-20-1147-2020, 2020.
- 489 Ge, P., Luo, G., Huang, W., Xie, H. B., Chen, J. W., and Luo, Y.: Theoretical study of the hydration effects on alkylamine and 490 alkanolamine clusters and the atmospheric implication, Chemosphere, 243, 2020.
- Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines Part I. A review, Atmos Environ, 45, 524-546, 491 492 10.1016/j.atmosenv.2010.10.012, 2011.
- 493 Glasoe, W. A., Volz, K., Panta, B., Freshour, N., Bachman, R., Hanson, D. R., McMurry, P. H., and Jen, C.: Sulfuric acid 494 nucleation: An experimental study of the effect of seven bases, J Geophys Res-Atmos, 120, 1933-1950, 2015.
- 495 Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M., 496 Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kurten, 497 A., Lehtipalo, K., Makhmutov, V., Molteni, U., Rissanen, M. P., Stozkhov, Y., Trostl, J., Tsagkogeorgas, G., Wagner, R., 498 Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.: Causes and importance of new particle 499 formation in the present-day and preindustrial atmospheres, J Geophys Res-Atmos, 122, 8739-8760, 2017.
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene 500 501 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210, 502 10.5194/acp-6-3181-2006, 2006.
- Hanson, D. R., Bier, I., Panta, B., Jen, C. N., and McMurry, P. H.: Computational Fluid Dynamics Studies of a Flow Reactor: 503 504 Free Energies of Clusters of Sulfuric Acid with NH₃ or Dimethyl Amine, J Phys Chem A, 121, 3976-3990, 2017.
- 505 Jen, C. N., McMurry, P. H., and Hanson, D. R.: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, 506 and trimethylamine, Journal of Geophysical Research: Atmospheres, 119, 7502-7514, 10.1002/2014jd021592, 2014a.
- 507 Jen, C. N., McMurry, P. H., and Hanson, D. R.: Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, 508 and trimethylamine, J Geophys Res-Atmos, 119, 7502-7514, 2014b.
- 509 Jen, C. N., Bachman, R., Zhao, J., McMurry, P. H., and Hanson, D. R.: Diamine-sulfuric acid reactions are a potent source of new particle formation, Geophys Res Lett, 43, 867-873, 10.1002/2015gl066958, 2016. 510
- 511 Jiang, J., Chen, M., Kuang, C., Attoui, M., and McMurry, P. H.: Electrical Mobility Spectrometer Using a Diethylene Glycol 512 Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm, Aerosol Science and 513 Technology, 45, 510-521, 10.1080/02786826.2010.547538, 2011.
- Jokinen, T., Sipil ä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Pet ä ä, T., Mauldin Iii, R. L., Kulmala, M., and Worsnop, 514 515 D. R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmos. Chem. Phys., 12, 4117-516 4125, 10.5194/acp-12-4117-2012, 2012.
- Kulmala, M.: How particles nucleate and grow, Science, 302, 1000-1001, 2003. 517
- 518 Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W., and McMurry, P. H.: 519 Formation and growth rates of ultrafine atmospheric particles: a review of observations, J Aerosol Sci, 35, 143-176, 2004.
- Kurten, A., Li, C. X., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy, J., Flagan, R. C., Hakala, J., Jokinen, T., 520 521 Kirkby, J., Kulmala, M., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Onnela, A., Rissanen, M. P., Simon, M., Sipila, M., Stozhkov, Y., Trostl, J., Ye, P. L., and McMurry, P. H.: New particle formation in the sulfuric acid-dimethylamine-522 523 water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model, 524 Atmos Chem Phys, 18, 845-863, 2018.
- 525 Kurten, A., Jokinen, T., Simon, M., Sipila, M., Sarnela, N., Junninen, H., Adamov, A., Almeida, J., Amorim, A., Bianchi, F., 526 Breitenlechner, M., Dommen, J., Donahue, N. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hakala, J., Hansel, 527 A., Heinritzi, M., Hutterli, M., Kangasluoma, J., Kirkby, J., Laaksonen, A., Lehtipalo, K., Leiminger, M., Makhmutov, V., 528 Mathot, S., Onnela, A., Petaja, T., Praplan, A. P., Riccobono, F., Rissanen, M. P., Rondo, L., Schobesberger, S., Seinfeld, 529 J. H., Steiner, G., Tome, A., Trostl, J., Winkler, P. M., Williamson, C., Wimmer, D., Ye, P. L., Baltensperger, U., Carslaw, 530 K. S., Kulmala, M., Worsnop, D. R., and Curtius, J.: Neutral molecular cluster formation of sulfuric acid-dimethylamine 531 observed in real time under atmospheric conditions, P Natl Acad Sci USA, 111, 15019-15024, 2014.
- 532 Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., and Kerminen, V. M.: Estimating nucleation rates from apparent particle 533 formation rates and vice versa: Revised formulation of the Kerminen-Kulmala equation, J Aerosol Sci, 38, 988-994, 2007.
- 534 Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T., Sarnela, N., Kurten, A., Ehrhart, S., Franchin, A.,
- 535 Nieminen, T., Riccobono, F., Sipila, M., Yli-Juuti, T., Duplissy, J., Adamov, A., Ahlm, L., Almeida, J., Amorim, A.,
- 536 Bianchi, F., Breitenlechner, M., Dommen, J., Downard, A. J., Dunne, E. M., Flagan, R. C., Guida, R., Hakala, J., Hansel,
- 537 A., Jud, W., Kangasluoma, J., Kerminen, V. M., Keskinen, H., Kim, J., Kirkby, J., Kupc, A., Kupiainen-Maatta, O.,
- 538 Laaksonen, A., Lawler, M. J., Leiminger, M., Mathot, S., Olenius, T., Ortega, I. K., Onnela, A., Petaja, T., Praplan, A.,
- 539 Rissanen, M. P., Ruuskanen, T., Santos, F. D., Schallhart, S., Schnitzhofer, R., Simon, M., Smith, J. N., Trostl, J., 540 Tsagkogeorgas, G., Tome, A., Vaattovaara, P., Vehkamaki, H., Vrtala, A. E., Wagner, P. E., Williamson, C., Wimmer, D.,
- 541 Winkler, P. M., Virtanen, A., Donahue, N. M., Carslaw, K. S., Baltensperger, U., Riipinen, I., Curtius, J., Worsnop, D. R.,
- 542 and Kulmala, M.: The effect of acid-base clustering and ions on the growth of atmospheric nano-particles, Nat Commun,
- 543 7, 2016.
- 544 Liu, J., Jiang, J., Zhang, Q., Deng, J., and Hao, J.: A spectrometer for measuring particle size distributions in the range of 3 545 nm to 10 μm, Frontiers of Environmental Science & Engineering, 10, 63-72, 10.1007/s11783-014-0754-x, 2016.

- Liu, Y., Yan, C., Feng, Z., Zheng, F., Fan, X., Zhang, Y., Li, C., Zhou, Y., Lin, Z., Guo, Y., Zhang, Y., Ma, L., Zhou, W., Liu,
 Z., Dada, L., Dälenbach, K., Kontkanen, J., Cai, R., Chan, T., Chu, B., Du, W., Yao, L., Wang, Y., Cai, J., Kangasluoma,
 J., Kokkonen, T., Kujansuu, J., Rusanen, A., Deng, C., Fu, Y., Yin, R., Li, X., Lu, Y., Liu, Y., Lian, C., Yang, D., Wang,
 W., Ge, M., Wang, Y., Worsnop, D. R., Junninen, H., He, H., Kerminen, V.-M., Zheng, J., Wang, L., Jiang, J., Pet ää, T.,
 Bianchi, F., and Kulmala, M.: Continuous and comprehensive atmospheric observations in Beijing: a station to understand
 the complex urban atmospheric environment, Big Earth Data, 4, 295-321, 10.1080/20964471.2020.1798707, 2020.
- Lu, Y. Q., Liu, L., Ning, A., Yang, G., Liu, Y. L., Kurten, T., Vehkamaki, H., Zhang, X. H., and Wang, L.: Atmospheric
 Sulfuric Acid-Dimethylamine Nucleation Enhanced by Trifluoroacetic Acid, Geophys Res Lett, 47, 2020.
- Mao, J., Yu, F., Zhang, Y., An, J., Wang, L., Zheng, J., Yao, L., Luo, G., Ma, W., Yu, Q., Huang, C., Li, L., and Chen, L.:
 High-resolution modeling of gaseous methylamines over a polluted region in China: source-dependent emissions and implications of spatial variations, Atmospheric Chemistry and Physics, 18, 7933-7950, 10.5194/acp-18-7933-2018, 2018.
- 557 Marten, R., Xiao, M., Rörup, B., Wang, M., Kong, W., He, X.-C., Stolzenburg, D., Pfeifer, J., Marie, G., Wang, D. S., Scholz, 558 W., Baccarini, A., Lee, C. P., Amorim, A., Baalbaki, R., Bell, D. M., Bertozzi, B., Caudillo, L., Chu, B., Dada, L., Duplissy, 559 J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Hansel, A., Heinritzi, M., Hofbauer, V., Kemppainen, D., Kürten, A., 560 Lampim äki, M., Lehtipalo, K., Makhmutov, V., Manninen, H. E., Mentler, B., Pet äj ä, T., Philippov, M., Shen, J., Simon, 561 M., Stozhkov, Y., Tom é, A., Wagner, A. C., Wang, Y., Weber, S. K., Wu, Y., Zauner-Wieczorek, M., Curtius, J., Kulmala, M., Möhler, O., Volkamer, R., Winkler, P. M., Worsnop, D. R., Dommen, J., Flagan, R. C., Kirkby, J., Donahue, N. M., 562 Lamkaddam, H., Baltensperger, U., and El Haddad, I.: Survival of newly formed particles in haze conditions, 563 564 Environmental Science: Atmospheres, 2, 491-499, 10.1039/D2EA00007E, 2022.
- McGrath, M. J., Olenius, T., Ortega, I. K., Loukonen, V., Paasonen, P., Kurten, T., Kulmala, M., and Vehkamaki, H.:
 Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations, Atmos Chem Phys, 12,
 2345-2355, 2012.
- Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos
 Chem Phys, 9, 8601-8616, 2009.
- Myllys, N., Kubecka, J., Besel, V., Alfaouri, D., Olenius, T., Smith, J. N., and Passananti, M.: Role of base strength, cluster
 structure and charge in sulfuric-acid-driven particle formation, Atmos Chem Phys, 19, 9753-9768, 2019.
- Olenius, T., Kupiainen-Maatta, O., Ortega, I. K., Kurten, T., and Vehkamaki, H.: Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters, J Chem Phys, 139, 2013.
- Olenius, T., Halonen, R., Kurten, T., Henschel, H., Kupiainen-Maata, O., Ortega, I. K., Jen, C. N., Vehkamaki, H., and Riipinen,
 I.: New particle formation from sulfuric acid and amines: Comparison of monomethylamine, dimethylamine, and
 trimethylamine, J Geophys Res-Atmos, 122, 7103-7118, 2017.
- Ortega, I. K., Kupiainen, O., Kurten, T., Olenius, T., Wilkman, O., McGrath, M. J., Loukonen, V., and Vehkamaki, H.: From
 quantum chemical formation free energies to evaporation rates, Atmos Chem Phys, 12, 225-235, 2012.
- Qiu, C., Wang, L., Lal, V., Khalizov, A. F., and Zhang, R.: Heterogeneous reactions of alkylamines with ammonium sulfate
 and ammonium bisulfate, Environ Sci Technol, 45, 4748-4755, 10.1021/es1043112, 2011.
- Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F.,
 Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel,
 A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kurten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov,
 V., Mathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipila, M.,
 Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A.,
 Wagner, P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala,
- Wagner, P. E., Weingarmer, E., Wex, H., Willimer, D., Carsiaw, K. S., Curtius, J., Donande, N. M., Mirkby, J., Rulmara,
 M., Worsnop, D. R., and Baltensperger, U.: Oxidation Products of Biogenic Emissions Contribute to Nucleation of
 Atmospheric Particles, Science, 344, 717-721, 2014.
- 589 Sceats, M. G.: Brownian coagulation in aerosols—the role of long range forces, J Colloid Interf Sci, 129, 105-112, 590 https://doi.org/10.1016/0021-9797(89)90419-0, 1989.
- 591 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1998.
- 592 Semeniuk, K. and Dastoor, A.: Current state of aerosol nucleation parameterizations for air-quality and climate modeling, 593 Atmos Environ, 179, 77-106, 2018.
- Shrivastava, M., Fast, J., Easter, R., Gustafson Jr, W. I., Zaveri, R. A., Jimenez, J. L., Saide, P., and Hodzic, A.: Modeling
 organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach,
 Atmos. Chem. Phys., 11, 6639-6662, 10.5194/acp-11-6639-2011, 2011.
- Shrivastava, M., Andreae, M. O., Artaxo, P., Barbosa, H. M. J., Berg, L. K., Brito, J., Ching, J., Easter, R. C., Fan, J., Fast, J. D., Feng, Z., Fuentes, J. D., Glasius, M., Goldstein, A. H., Alves, E. G., Gomes, H., Gu, D., Guenther, A., Jathar, S. H., Kim, S., Liu, Y., Lou, S., Martin, S. T., McNeill, V. F., Medeiros, A., de Sá S. S., Shilling, J. E., Springston, S. R., Souza, R. A. F., Thornton, J. A., Isaacman-VanWertz, G., Yee, L. D., Ynoue, R., Zaveri, R. A., Zelenyuk, A., and Zhao, C.: Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest, Nat Commun, 10, 1046, 10.1038/s41467-019-08909-4, 2019.
- Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., Ehrhart, S., Finkenzeller, H.,
 Pichelstorfer, L., Nieminen, T., He, X.-C., Brilke, S., Xiao, M., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bräkling,
 S., Caudillo Murillo, L., Chen, D., Chu, B., Dada, L., Dias, A., Dommen, J., Duplissy, J., El Haddad, I., Fischer, L.,
- Gonzalez Carracedo, L., Heinritzi, M., Kim, C., Koenig, T. K., Kong, W., Lamkaddam, H., Lee, C. P., Leiminger, M., Li,
- Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Müller, T., Nie, W., Partoll, E., Pet áj ä, T., Pfeifer, J., Philippov,
- M., Rissanen, M. P., Rörup, B., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber,
- 609 C., Tham, Y. J., Tom & A., Vazquez-Pufleau, M., Wagner, A. C., Wang, M., Wang, Y., Weber, S. K., Wimmer, D., Wlasits,

https://doi.org/10.5194/acp-2023-15 Preprint. Discussion started: 31 January 2023 © Author(s) 2023. CC BY 4.0 License.

- P. J., Wu, Y., Ye, Q., Zauner-Wieczorek, M., Baltensperger, U., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R.
 C., Hansel, A., Kulmala, M., Lelieveld, J., Volkamer, R., Kirkby, J., and Winkler, P. M.: Enhanced growth rate of atmospheric particles from sulfuric acid, Atmos Chem Phys, 20, 7359-7372, 10.5194/acp-20-7359-2020, 2020.
- Wang, L., Lal, V., Khalizov, A. F., and Zhang, R.: Heterogeneous Chemistry of Alkylamines with Sulfuric Acid: Implications
 for Atmospheric Formation of Alkylaminium Sulfates, Environmental Science & Technology, 44, 2461-2465,
 10.1021/es9036868, 2010.
- Wu, Z. J., Hu, M., Liu, S., Wehner, B., Bauer, S., Ssling, A. M., Wiedensohler, A., Petaja, T., Dal Maso, M., and Kulmala,
 M.: New particle formation in Beijing, China: Statistical analysis of a 1-year data set, J Geophys Res-Atmos, 112, 2007.
- Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y., Worsnop, D. R., and
 Wang, L.: Strong atmospheric new particle formation in winter in urban Shanghai, China, Atmospheric Chemistry and
 Physics, 15, 1769-1781, 10.5194/acp-15-1769-2015, 2015.
- Yang, D., Zhu, S., Ma, Y., Zhou, L., Zheng, F., Wang, L., Jiang, J., and Zheng, J.: Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions, Environmental
 Science & Technology, 56, 5440-5447, 10.1021/acs.est.2c00555, 2022.
- Yang, S., Liu, Z., Clusius, P. S., Liu, Y., Zou, J., Yang, Y., Zhao, S., Zhang, G., Xu, Z., Ma, Z., Yang, Y., Sun, J., Pan, Y., Ji,
 D., Hu, B., Yan, C., Boy, M., Kulmala, M., and Wang, Y.: Chemistry of new particle formation and growth events during
 wintertime in suburban area of Beijing: Insights from highly polluted atmosphere, Atmospheric Research, 255, 105553,
 https://doi.org/10.1016/j.atmosres.2021.105553, 2021.
- Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipila,
 M., Wang, M. Y., Wang, X. K., Xiao, S., Chen, H. F., Lu, Y. Q., Zhang, B. W., Wang, D. F., Fu, Q. Y., Geng, F. H., Li,
 L., Wang, H. L., Qiao, L. P., Yang, X., Chen, J. M., Kerminen, V. M., Petaja, T., Worsnop, D. R., Kulmala, M., and Wang,
 L.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278-281, 2018.
- Yu, F.: From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model, Atmos Chem Phys, 6,
 5193-5211, 2006.
- Yu, F. Q. and Turco, R. P.: From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol
 formation, J Geophys Res-Atmos, 106, 4797-4814, 2001.
- Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling kinetic partitioning of secondary organic aerosol and
 size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction, Atmos Chem Phys,
 14, 5153-5181, 2014.
- Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M.
 O., Zhao, C., Gaudet, B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation, Proc Natl Acad Sci U S A, 117, 25344-25351, 10.1073/pnas.2006716117, 2020.
- Zheng, H., Cai, S., Wang, S., Zhao, B., Chang, X., and Hao, J.: Development of a unit-based industrial emission inventory in
 the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling, Atmospheric Chemistry and Physics,
 19, 3447-3462, 10.5194/acp-19-3447-2019, 2019.
- Zheng, J., Ma, Y., Chen, M., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z., Wang, X., and Chen, L.: Measurement
 of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry,
 Atmos Environ, 102, 249-259, 10.1016/j.atmosenv.2014.12.002, 2015a.
- Zheng, J., Ma, Y., Chen, M. D., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z., Wang, X., and Chen, L. X.:
 Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass
 spectrometry, Atmos Environ, 102, 249-259, 2015b.
- Zhu, S., Yan, C., Zheng, J., Chen, C., Ning, H., Yang, D., Wang, M., Ma, Y., Zhan, J., Hua, C., Yin, R., Li, Y., Liu, Y., Jiang,
 J., Yao, L., Wang, L., Kulmala, M., and Worsnop, D. R.: Observation and Source Apportionment of Atmospheric Alkaline
 Gases in Urban Beijing, Environmental Science & Technology, 56, 17545-17555, 10.1021/acs.est.2c03584, 2022.

656

657658

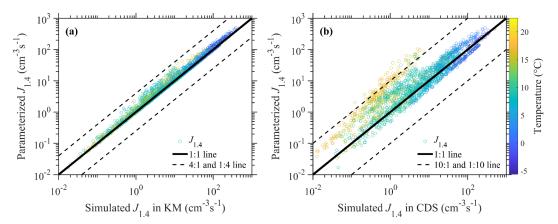


Figure 1. $J_{1.4}$ Comparison of simplified parameterization method with kinetic model (KM) results (a) and cluster dynamic simulation (CDS) results (b). The red hollow circles showed the simulation results according to atmospheric observation data. The grey straight line represents the 1:1 line, while the grey dashed line represents the $\pm 50\%$ variation. The circles are colored by the temperatures.

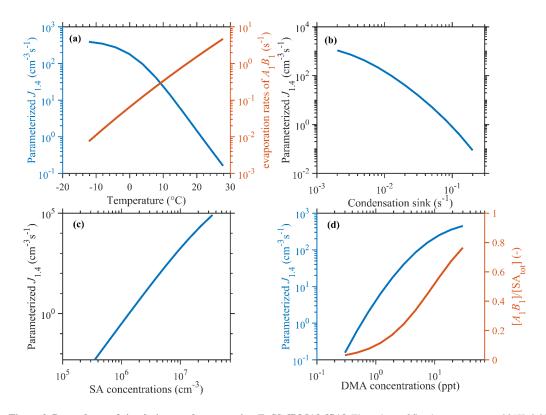


Figure 2. Dependence of simulation results on varying T, CS, [DMA], [SA]. The values of fixed parameters are 281K, 0.02 s⁻¹, 3 ppt, and 3.5×10^6 cm⁻³, respectively, as median values during NPF events in our simulation period.

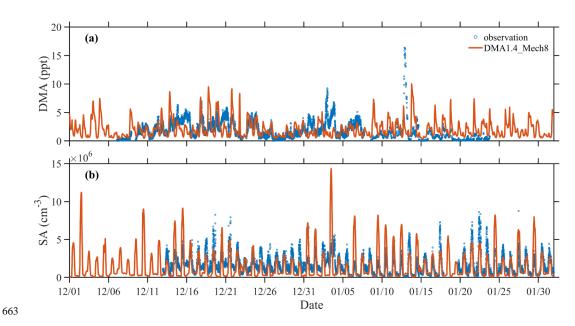


Figure 3. Comparison of simulated concentrations of DMA (a) and SA (b) with field measurements for wintertime Beijing (December 2018 and January 2019).

668

669

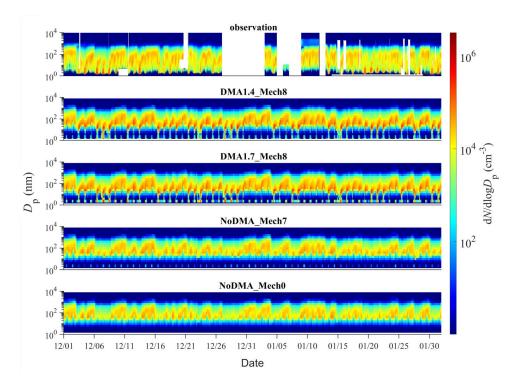


Figure 4. Comparison of time series of particle number size distribution simulated by various scenarios with the observed one. Description of four scenarios is detailed in *Configuration of the Updated WRF-Chem/R2D-VBS Model* section.

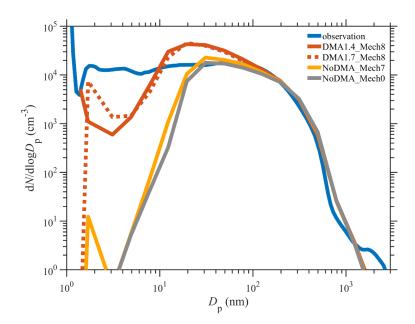


Figure 5. Comparison of averaged particle number size distribution simulated by various scenarios with the observed
 one. Description of four scenarios is detailed in *Configuration of the Updated WRF-Chem/R2D-VBS Model* section.

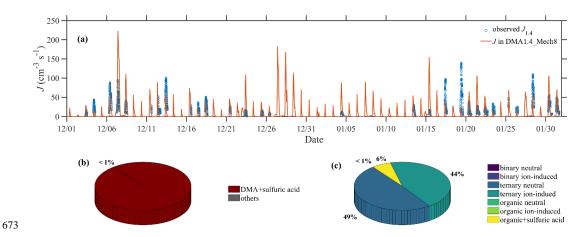


Figure 6. Comparison of simulated nucleation rates with those derived from field measurements (a), and contribution from different nucleation mechanisms (b) with a special illustration of nucleation pathways other than SA-DMA (c).